

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2001 Rule WLM200 .1

Rule WLM200: Average CPU use per transaction is higher than goal

Finding: CPExpert has determined that the average CPU time per transaction was
higher than the response goal for the service class. This finding does not
apply to subsystem transactions (that is, it does not apply to CICS or IMS
transactions).

Impact: This finding has a HIGH IMPACT on performance of your computer system.

Logic flow: The following rules cause this rule to be invoked:
Rule WLM101: Service Class did not achieve average response goal
Rule WLM102: Service Class did not achieve percentile response

goal

Discussion : Transactions executing in the system can be in a variety of states from the
perspective of the Workload Manager: using the CPU, delayed for an
identifiable reason, or delayed for some unknown reason. The System
Resources Manager (SRM) periodically samples the state of each address
space in each service class. These samples are accumulated into
variables which are recorded by RMF in the "Service Class Period Data
Section" of SMF Type 72 (Subtype 3) records. Please see Section 4 for a
discussion of these states and the sampling process.

CPExpert analyzes the amount of CPU time used by transactions by the
following process:

• CPExpert first computes the number of samples which found an address
space executing in the service class. This is done by summing CPU
Using samples (R723CCUS), Total Wait samples (R723CTOT), and
Unknown Delay samples (R723CUNK). The result is titled "EXSAMP" in
the code.

• CPExpert divides the number of CPU Using samples (R723CCUS) by the
EXSAMP value, to yield the percent of execution samples in which the
SRM found an address space was using the CPU. The resulting
percentage is multiplied by the average transaction response time to
yield the amount of time when the average transaction was using the
CPU.

CPExpert compares the amount of time when the average transaction was
using the CPU against the response goal. CPExpert produces Rule
WLM200 if the CPU use per transaction is higher than the response goal.

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2001 Rule WLM200 .2

RULE WLM200: AVERAGE CPU USE PER TRANSACTION IS HIGHER THAN GOAL

 The average CPU time was higher than the response goal for Service
 Class ST_USERS (Period 1). The average transaction used more CPU
 time than the response goal of 0.200. MVS cannot achieve the
 response goal unless the CPU requirements of the average transaction
 can be reduced. Alternatively, you can review the response goal to
 see whether the goal should be increased. Please review the discussion
 with WLM200 regarding other alternatives. This situation applies to the
 following measurement intervals:

 TOTAL AVERAGE CPU TIME
 MEASUREMENT INTERVAL TRANSACTIONS PER TRANSACTION
 14:00-14:15,01MAR1994 14 0.493
 14:15-14:30,01MAR1994 33 1.770
 14:30-14:45,01MAR1994 33 2.553
 14:45-15:00,01MAR1994 198 0.556
 15:00-15:16,01MAR1994 33 2.391

The following example illustrates the output from Rule WLM200:

Suggestion : MVS cannot achieve the specified response goal for the service class
unless the CPU requirements of the average transaction can be reduced.

CPExpert suggests that you consider the following actions:

• Perform a "reality" check on the finding from CPExpert by examining the
"Response Time Distribution" produced by Rule WLM106 or Rule
WLM107 (one of these rules will be produced depending upon the nature
of the service class and performance goal).

Determine whether most transactions missed the response objective or
whether a few transactions significantly missed the response objective.
If only a few transactions significantly missed the response objective,
it is likely that these transactions skewed the findings.

• Review your performance goal for the transactions served by the service
class, to determine whether the response goal is correct.

• Review the application processing the transactions, to determine whether
the application code can more efficiently use the CPU. If the application
code can be made more efficient, less CPU time will be required to
process the transactions.

If you find that some transactions skewed the findings, you may wish to
consider other alternatives:

• If you can identify the transactions, perhaps you can use Workload
Categorization to place the transactions into a different service class.

 Although other rules also may show that transactions also are denied access to the CPU, Rule WLM200 reports that transactions are1

delayed because of CPU use.

©Copyright 1994, Computer Management Sciences, Inc. Revised: October, 2001 Rule WLM200 .3

You may wish to specify a different importance and different
performance goal for this new service class.

• If you do not wish to place the transactions into a different service
class (or are unable to identify them), perhaps you can establish
another performance period for the existing service class. By
specifying an appropriate DUR value, you can cause the SRM to
migrate the transactions significantly using the CPU into a lower
service class period (perhaps with a different importance and different
performance goal).

This particular alternative is easy to implement, and the inherent
processing characteristics of the transactions will automatically cause
them to be migrated to lower period service classes. As the CPU-
intensive transactions use CPU cycles, they will accumulate service,
and the SRM will migrate the CPU-intensive transactions to a lower
performance period.

This alternative is not listed as the initial alternative because the
transactions will initially execute in Period 1 of the service class. By
executing in Period 1 of the service class, the transactions may
deprive short-running transactions of access to a processor and thus
cause the short-running transactions to be unreasonably delayed.

• If you have specified an average response goal for the service
class, perhaps you can change the goal to a percentile response
goal . With a percentile goal, the Workload Manager would not be as
concerned about the few transactions which used significantly more
resources and consequently skewed the average response. Rather,
the Workload Manager would base its workload management
decisions on the percent of transactions which met the response goal.

• If none of the above options are applicable, and if this service class is
very important, you may wish to consider running the application on a
more powerful processor.

Note that simply increasing the Importance specified to the Workload
Manager, or adding more logical processors (in an LPAR environment)
will not resolve the problem with the service class not achieving its
response goal. Transactions are delayed because they are using the
CPU, not because they are denied access to the CPU . 1

